Advanced Knowledge Management
Overview
This guide covers advanced techniques for managing and optimizing knowledge sources in Gentic.
Advanced Knowledge Sources
Vector Databases
const knowledgeSource = await client.knowledgeSources.create({
name: "Vector Database",
type: "vector",
config: {
provider: "pinecone",
index: "products",
dimension: 1536
}
});
Graph Databases
const knowledgeSource = await client.knowledgeSources.create({
name: "Knowledge Graph",
type: "graph",
config: {
provider: "neo4j",
database: "knowledge",
schema: {
nodes: ["Concept", "Entity"],
relationships: ["RELATES_TO", "IS_A"]
}
}
});
Advanced Features
Semantic Search
const results = await client.knowledgeSources.search({
sourceId: "kb-123",
query: "product specifications",
options: {
semantic: true,
threshold: 0.8
}
});
Knowledge Graph Traversal
const traversal = await client.knowledgeSources.traverse({
sourceId: "kg-123",
startNode: "product-1",
relationship: "RELATED_TO",
depth: 3
});
Incremental Updates
await client.knowledgeSources.update({
sourceId: "kb-123",
operation: "incremental",
data: {
documents: [
{
id: "doc-1",
content: "Updated product information"
}
]
}
});
Optimization Techniques
-
Indexing Strategies
- Vector indexing for semantic search
- Graph indexing for relationships
- Hybrid indexing approaches
-
Caching
- Query result caching
- Frequently accessed content
- Cache invalidation strategies
-
Performance Tuning
- Batch processing
- Parallel indexing
- Resource allocation
Best Practices
-
Data Organization
- Structured vs unstructured data
- Metadata management
- Version control
-
Quality Control
- Data validation
- Consistency checks
- Regular audits
-
Security
- Access control
- Data encryption
- Audit logging
Next Steps
- Learn about Workflows
- Explore Integration Examples
- Check out Best Practices